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In this paper we present a novel methodology for decoupling the solution of the Magneto-Quasi-Static (MQS) equations in 

subdomains, through a coupling surface and related equivalent currents. In particular, the solution outside the coupling surface is 

"condensed" with a suitable boundary condition. Different formulations can be used in each subdomain, hence allowing the most 

convenient approach to be used in each case. A simple test case is presented, showing the effectiveness of the method. 
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I. INTRODUCTION 

HE MAGNETO-QUASI-STATIC (MQS) problem is the most 

difficult to be solved numerically, among the mathematical 

models approximating Maxwell equations in static and quasi-

static limits (i.e. when one or both the time derivatives can be 

neglected). This is confirmed by the great number of different 

formulations developed [1] and implemented in research and 

commercial codes.  

The complexity is greatly exacerbated whenever nonlinear 

(e.g. ferromagnetic) materials are present in the domain and/or 

multiphysics problems must be treated (e.g. when a fusion 

plasma interacts with conductors [2]). In such cases, however, 

it may happen that the "complex" subdomain (nonlinear or 

multiphysics) is spatially limited, while the rest of the domain 

has more "simple" properties (e.g. linear conducting materials 

surrounded by vacuum). If this is the case, one can think to 

use different approaches in the various subdomains, in 

particular trying to exploit the "simplicity" wherever possible. 

The present paper presents a novel methodology giving an 

answer in this respect. Assuming that the exterior (unbounded) 

part of the solution domain includes only linear nonmagnetic 

conductors, an integral formulation in the stream of [3] is 

used, in order to "condense" the effect of this part of the 

domain on the rest - in some sense, the proposed approach, 

detailed in Section II, can be seen as an analogue to 

Thevenin's theorem in circuit theory. A simple test case is also 

presented in Section III, to show the effectiveness of the 

method. In the full paper, other examples will be presented 

which are relevant to applications and that will highlight the 

theoretical properties and soundness of the method. 

II. FORMULATION 

Let us assume that the MQS (eddy currents) equations must 

be solved in an unbounded domain Ω.We suppose that Ω can 

be partitioned in two subdomains: Ωi and Ωe. We suppose that 

Ωe is unbounded, including only linear non-magnetic 

conducting materials. Conversely, Ωi is bounded, but we make 

no assumptions on the kind of materials inside Ωi. We call S 

(the coupling surface) the boundary of Ωi, separating the two 

domains. 

The key point is to find two equivalent surface current 

densities: JSe is able to produce the same magnetic field 

outside S as all the sources inside S; JSi is able to produce the 

same magnetic field inside S as all the sources outside S. 

Adopting the approach depicted in [3], we give a finite 

elements discretization of S and we expand such current 

densities in terms of the curl of edge elements Nk:   
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The number and the choice of basis functions, related to the 

edges of the mesh, must be carefully done in order to ensure a 

correct representation of the current density.  

Given the sources inside S, the quantity JSe can be found by 

supposing that the magnetic vector potential produced by JSe 

(denoted as Aeq) is equal to the one produced by the sources 

inside S (indicated as Ai). Given the uniqueness properties of 

the MQS problem, with suitable gauge conditions, it is 

sufficient to impose (in weak form) this condition on S to 

guarantee that it also holds in all Ωe: 
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where w is a suitable weighting function. From the physical 

point of view, we are assuming that S is made of a perfectly 

conducting material, in which a current is induced, able to 

perfectly cancel (outside S) the magnetic field of the sources 

inside S. Adopting the Galerking approach and using the Biot-

Savart integral to express the vector potential, (2) becomes: 
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With a similar reasoning, we can get: 
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where Ae is the magnetic vector potential of all the sources 

outside S. Given the assumptions reported above about Ωe, it 

is convenient to use an integral formulation to find Ae. In 

particular, we follow [3]: we give a finite elements 

T 



discretization of all non-magnetic conductors V in Ωe, we 

describe the current density in V in terms of discrete DoF IV 

and we impose Ohm's law in weak form with the Galerkin 

approach, giving rise to: 
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where the inductance terms have similar definitions as in (3) 

and b is a forcing term. 

Solving (5) with an implicit time stepping, we have: 

cILZI SeVSVVV +−=
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where 
VVVVVV

RtLZ ∆+= and c is a known term. From (6): 
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where ae and d are known terms. Combining (3), (4), (7): 
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where K is a symmetric matrix and e is a known term. 

Equation (8) is an affine relation between ISi and Ui, which 

in a sense "condense" what is present in Ωe, thanks to the 

assumptions made and to the properties of the integral 

formulation used. Hence, (8) can be seen as a suitable 

boundary condition that can be used to solve the problem only 

in Ωi, but self-consistently taking into account also the rest of 

the domain. The solution of the problem in Ωi with boundary 

condition (8) can be in principle carried out with any 

formulation, regardless of how we get to (8). 

III. EXAMPLE OF APPLICATION 

Although the proposed method is most effective when the 

solution of the interior problem in Ωi is "difficult" (e.g. 

including nonlinear materials, or with multiphysics problems 

like interaction with fusion plasmas [2]), here we present a 

simple example in which also in Ωi only nonmagnetic 

conducting materials are present, like in Ωe. This example 

hence can be also seen in the frame of the approach proposed 

in [4], which quantifies the error made when neglecting the 

effects of  the equivalent current. In this case, the same 

formulation as above can be used also in Ωi, giving rise to: 
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where the suffix "D" stands for the domains inside S and aD is 

related to impressed sources inside S. Combining (9) and (8): 
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with obvious definitions. In other words, we can solve a 

reduced problem, only on the interior domain, in which the 

presence of the rest of the domain is taken into account via a 

modified inductance matrix 
SDDSDDDD

LKLLL +=
*

and a 

modified forcing term 
*
Db . 

Figure 1 shows an example in which we consider two 

conducting blocks and one driving coil, fed with a time-

varying voltage. The coupling surface (Fig. 2) is a cube 

enclosing the lower block (interior domain). The exterior 

(unbounded) domain comprises the higher block and the 

driving coil. Figure 1 also illustrates the current density 

induced in the two blocks at a sample time instant; Fig. 2 

shows instead the equivalent current ISe on the coupling 

surface. We computed the solution both with the standard 

approach (i.e. considering both the blocks together) and using 

the proposed coupling scheme (i.e. only in the lower block, 

with the modified inductance matrix). The maximum 

difference between the two solutions is around 5%. This error 

can be improved by increasing the discretization level of the 

coupling surface. This work was supported in part by Italian 

MIUR under PRIN grant 2010SPS9B3. 

 

Fig. 1. Current density pattern induced in the two conducting block. 

 

Fig. 2. Equivalent current on the coupling surface 
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